Weak Bases and Metrization
نویسندگان
چکیده
Several weak base (in the sense of A. V. Arhangel'skiT) metrization theorems are established, including a weak base generalization of the Nagata-Smirnov Metrization Theorem.
منابع مشابه
On the Metrizability of Spaces with a Sharp Base
A base B for a space X is said to be sharp if, whenever x ∈ X and (Bn)n∈ω is a sequence of pairwise distinct elements of B each containing x, the collection { ⋂ j≤n Bj : n ∈ ω} is a local base at x. We answer questions raised by Alleche et al. and Arhangel’skĭı et al. by showing that a pseudocompact Tychonoff space with a sharp base need not be metrizable and that the product of a space with a ...
متن کاملSn-metrizable Spaces and Related Matters
sn-networks were first introduced by Lin [12], which are the concept between weak bases and cs-networks. sn-metrizable spaces [6] (i.e., spaces with σ-locally finite sn-networks) are one class of generalized metric spaces, and they play an important role in metrization theory, see [6, 13]. In this paper, we give a mapping theorem on sn-metrizable spaces, discuss relationships among spaces with ...
متن کاملSolution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملSome Characterizations of Developable Spaces
Two characterizations of developable spaces are proved which may be viewed as analogues, for developable spaces, of the Nagata-Smirnov metrization theorem or of the "double sequence metrization theorem " of Nagata respectively.
متن کاملNagata-Smirnov Metrization Theorem.nb
Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces. In other words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric. As a motivational example, consider the discrete topology on some space (every subset of the space is open). Though it might not be apparent to...
متن کامل